東京大学産学連携プロポーザル

検索された候補から郵便番号を選択してください。
    検索された候補から企業名を選択してください。
    (本社住所で選択してください。)
    10件
    • 10件
    • 25件
    • 50件
    この画面を閉じて企業名を入力してください。

    お問い合わせ

    以下のプロポーザルに問い合わせをします。表示される項目を順に入力してください。
    過去にお問い合わせされている場合は、お問い合わせの際に入力した情報が自動で入力されます。

    *は入力必須項目です。
    光援用ナノプローブを用いた太陽電池素子等の解析・診断
    高橋 琢二生産技術研究所 情報・エレクトロニクス系部門
    ナノプローブでは、微細構造の幾何学的形状情報ばかりではなく物性的情報を得ることが可能である。この研究室では、ナノプローブを光照射下にて動作させることによって、被測定試料の光学的特性を可視化・計測する研究に取り組んでいる。このような手法を応用して、太陽電池素子等を解析・診断する技術および装置の開発を行いたい。 ケルビンプローブフォース顕微鏡(KFM)は原子間力顕微鏡(AFM)をベースとした顕微鏡の一種であり、試料の表面形状とポテンシャル像を同時に得ることができる。このKFMを光照射下で用いれば、光起電力特性の計測や、その空間分布の観測が可能となる。図1は、光援用KFMで観察したCu(In,Ga)Se2化合物半導体太陽電池における(a)表面形状像と(b)暗状態での表面電位像、(c)光起電力像である。1mm程度の結晶粒やその粒界付近での光起電力分布が可視化されていることが見て取れる。また、光起電力測定の応用によって、太陽電池材料における重要な特性指標である少数キャリアの寿命や拡散長などの局所的計測にも成功している。一方、光照射に伴う被測定試料の熱膨張量をAFMにて観測する光熱分光計測の開発にも取り組んでいる。図2は、多結晶Si太陽電池上で観測した(a)表面形状像と(b)光熱信号像である。特定の結晶粒界近傍で、光熱信号が増大していることがわかる。これは、この粒界付近で、太陽電池での損失に対応する光励起キャリアの非発光再結合が促進されていることを示している。

    メール*メールアドレスを記入してください。

    企業名*検索された企業候補に企業名が見つからない場合は、企業名を記入してください。

    郵便番号*
    郵便番号を記入してください。

    住所*住所を記入してください。

    URL*URLを記入してください。

    業種

    規模

    氏名*氏名を記入してください。

    所属部署

    職名

    電話

    光援用ナノプローブを用いた太陽電池素子等の解析・診断
    高橋 琢二生産技術研究所 情報・エレクトロニクス系部門
    ナノプローブでは、微細構造の幾何学的形状情報ばかりではなく物性的情報を得ることが可能である。この研究室では、ナノプローブを光照射下にて動作させることによって、被測定試料の光学的特性を可視化・計測する研究に取り組んでいる。このような手法を応用して、太陽電池素子等を解析・診断する技術および装置の開発を行いたい。 ケルビンプローブフォース顕微鏡(KFM)は原子間力顕微鏡(AFM)をベースとした顕微鏡の一種であり、試料の表面形状とポテンシャル像を同時に得ることができる。このKFMを光照射下で用いれば、光起電力特性の計測や、その空間分布の観測が可能となる。図1は、光援用KFMで観察したCu(In,Ga)Se2化合物半導体太陽電池における(a)表面形状像と(b)暗状態での表面電位像、(c)光起電力像である。1mm程度の結晶粒やその粒界付近での光起電力分布が可視化されていることが見て取れる。また、光起電力測定の応用によって、太陽電池材料における重要な特性指標である少数キャリアの寿命や拡散長などの局所的計測にも成功している。一方、光照射に伴う被測定試料の熱膨張量をAFMにて観測する光熱分光計測の開発にも取り組んでいる。図2は、多結晶Si太陽電池上で観測した(a)表面形状像と(b)光熱信号像である。特定の結晶粒界近傍で、光熱信号が増大していることがわかる。これは、この粒界付近で、太陽電池での損失に対応する光励起キャリアの非発光再結合が促進されていることを示している。

    希望する連携*希望する連携を選択してください。

    お問い合わせ内容* お問い合わせ内容を記入してください。 お問い合わせ内容は500文字以内で記入してください。

    問い合わせ由来*問い合わせ由来を選択してください。